Binding of human extracellular superoxide dismutase C to sulphated glycosaminoglycans.

نویسندگان

  • K Karlsson
  • U Lindahl
  • S L Marklund
چکیده

The secretory enzyme extracellular superoxide dismutase (EC-SOD) occurs in at least three forms, which differ with regard to heparin affinity: A lacks affinity, B has intermediate affinity, and C has relatively strong affinity. The affinity of EC-SOD C for various sulphated glycosaminoglycans (GAGs) was assessed (a) by determining the concentration of NaCl required to release the enzyme from GAG-substituted Sepharose 4B and (b) by determining the relative potencies of the GAGs to release EC-SOD C from heparan sulphate-Sepharose 4B. Both methods indicated the same order of affinity. Heparin bound EC-SOD C about 10 times as avidly as the studied heparan sulphate preparation, which in turn was 10 and 150 times as efficient as dermatan sulphate and chondroitin sulphate respectively. Chondroitin sulphate showed weak interaction with EC-SOD C at physiological ionic strength. Heparin subfractions with high or low affinity for antithrombin III were equally efficient. The binding of EC-SOD C to heparin-Sepharose was essentially independent of pH in the range 6.5-9; below pH 6.5 the affinity increased, and beyond pH 9.5 there was a precipitous fall in affinity. The inhibitory effect of NaCl on the binding of EC-SOD C to GAGs indicates that the interaction is of electrostatic nature. EC-SOD C carries a negative net charge at neutral pH, and it is suggested that the binding occurs between the negative charges of the GAG sulphate groups and a structure in the C-terminal end of the enzyme that has a cluster of positive charges. These results are compatible with the notion that heparan sulphate proteoglycans on cell surfaces or in the intercellular matrix may serve to bind EC-SOD C in tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The site of nonenzymic glycation of human extracellular-superoxide dismutase in vitro.

The secretory enzyme extracellular-superoxide dismutase (EC-SOD) has affinity for heparin and some other sulfated glycosaminoglycans and is in vivo bound to heparan sulfate proteoglycan. Nonenzymic glycation of EC-SOD, both in vivo and in vitro, is associated with a reduction in heparin affinity, whereas the enzymic activity is not affected. The glycation sites in EC-SOD are further studied in ...

متن کامل

Extracellular Superoxide Dismutase

Extracellular-superoxide dismutase is a tetrameric copper-containing glycoprotein that previously has been demonstrated to be the major superoxide dismutase of human extracellular fluids. The occurrence of this enzyme in various human tissues that were removed from two accidental death victims and in 19 different human cultured cell lines was determined. All investigated tissues were found to c...

متن کامل

Endocytosis of sulphated proteoglycans by cultured skin fibroblasts.

1. Human skin fibroblasts internalize homologous sulphated proteoglycans by adsorptive endocytosis. Endocytosis rate is half maximal when the concentration of the proteoglycans is 0.1 nM. At saturation, a single fibroblast may endocytose up to 8 X 10(6) proteoglycan molecules/h. 2. The kinetics of prote;glycan binding to the cell surface suggest the presence of 6 X 10(5) high-affinity binding s...

متن کامل

Human Erythrocyte Superoxide Dismutase Encapsulated in Positively Charged Liposomes

      Superoxide dismutase (SOD) is an important antioxidant that protects many types of cells from the free radical damage. One of the possible ways for the use of SOD is its incorporation in liposomes. The aim of this study was to investigate the effect of cationic phospholipids on the entrapment of human erythrocyte superoxide dismutase (Cu/Zn SOD) in liposomes. Also, in the present study, w...

متن کامل

Properties of extracellular superoxide dismutase from human lung.

A further characterization of human extracellular superoxide dismutase is reported. The study was especially aimed at the interaction with substances known to interfere with CuZn superoxide dismutase and other superoxide dismutases. Extracellular superoxide dismutase is efficiently inhibited by cyanide and is about 3 times more sensitive than is human CuZn superoxide dismutase. The sensitivity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 256 1  شماره 

صفحات  -

تاریخ انتشار 1988